More Ways to Connect
  LinkedIn Twitter YouTube Instagram
Tiina Reponen, PhD, Sergey Grinsphun, PhD, Atin Adhikari, PhD and Chunlei Li, PhD, are developing a new method for combating weapons of mass destruction.

Tiina Reponen, PhD, Sergey Grinsphun, PhD, Atin Adhikari, PhD and Chunlei Li, PhD, are developing a new method for combating weapons of mass destruction.
Back Next
Publish Date: 05/28/08
Media Contact: AHC Public Relations, (513) 558-4553
PDF download
RSS feed
related news
share this
$1.3 Million Basic Science Grant Takes Aim at Weapons of Mass Destruction

Cincinnati—University of Cincinnati (UC) bioaerosol experts have received a $1.3 million basic science grant to investigate a new method for killing the biological agents most likely to be used in “weapons of mass destruction.”


Led by Sergey Grinshpun, PhD, director of UC’s Center for Health-Related Aerosol Studies, the multi-institutional team’s goal is to create a single, self-contained compound that can be released into the air after an explosion to target and destroy dangerous biological agents.


The funding comes from the U.S. Department of Defense’s Defense Threat Reduction Agency, which recently began awarding basic science grants for research aimed at reducing, eliminating or countering the threat of weapons of mass destruction in the battlefield and for civilians.


The UC-led team is one of a few groups to receive funding for basic research this year.


“Destroying aerosolized bioaerosol agents is very challenging,” says Grinshpun, a UC professor of environmental health and principal investigator of the grant. “Some biological agents are resistant to environmental stress, including high temperature. They survive. Once in the air, these bacteria and viruses can travel through the air like any other aerosolized particles and wreak havoc.”


He says the predominant thinking is that if a biological weapons storage facility is hit with an explosive device, the heat generated from the explosion will also destroy viruses and bacteria.


“But that is not necessarily the case with a microorganism that has been specifically prepared to be part of a weapon intended to inflict massive harm,” explains Grinshpun. “That explosion may actually just help disseminate the microorganisms through the air.”


Grinshpun and his team have partnered with researchers at New Jersey Institute of Technology (NJIT) and its business incubator, Reactive Metals, Inc., to develop and validate an experimental method for deactivating biological agents using a new class of energetic materials: filled nanocomposite materials, which are engineered to have specific properties.


UC and NJIT researchers will develop a prototype of the filled nanocomposite material that could be released into the air after detonation of a weapon of mass destruction. The idea is that these materials will release specific components—iodine, for example—into the atmosphere to kill or “deactivate” the potentially lethal bacterial agents.


Small-scale tests using non-pathogenic surrogates will be conducted in specialized biosafety chambers in UC’s environmental health department. The entire process happens in milliseconds, so in order to accurately measure exposure and the effects of the pellets the research team will use an algorithm of experimental simulation that allows it to slow down the process and achieve necessary conditions for accurate laboratory measurements.


Since there are thousands of species of bacteria, Grinshpun’s team has selected two low-risk simulants of microorganisms most likely targeted for use in weapons of mass destruction: Bacillus subtilis, a bacterial spore, and MS2 bacteriophage virus.


“It’s important to note that this is a laboratory study—not a real-to-life simulation. Our goal is to understand the biological reasons a microorganism will not die after being exposed to heat stress,” explains Grinshpun. “We’re pioneering a novel method we hope will work under specific conditions, but the broad-reaching outcome of combating weapons of mass destruction is more important.”


UC’s Tiina Reponen, PhD, and Atin Adhikari, PhD, are co-investigators in this study. The team also includes Chunlei Li, PhD, a visiting fellow from Fudan University in China, and graduate student Robert Eninger. Researchers Mirko Stoenitz, PhD, Edward Dreynzin, PhD, and Mike Trunov, PhD, represent the NJIT team collaborating in this study. 

 back to list | back to top